Low-temperature wafer-scale growth of MoS$_2$-graphene heterostructures

Hyeong-U Kima, Mansu Kimb, Yinhua Jina, Yuhwan Hyeona, Yu Seok Kimb, Byeong-Seon Anb, Cheol-Woong Yangb, Vinit Kanadea, Ji-Yun Moonc, Geun Yong Yeoma,b, Dongmok Whangaa,b, Jae-Hyun Leec,

a SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea
b School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
c School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea

ARTICLE INFO
Keywords: MoS$_2$ Graphene Heterostructure Large-scale PECVD Hydrogen evolution reaction

ABSTRACT
In this study, we successfully demonstrate the fabrication of a MoS$_2$-graphene heterostructure (MGH) on a 4 inch wafer at 300 °C by depositing a thin film seed layer on graphene followed by sulfurization using H$_2$S plasma. By utilizing Raman spectroscopy and high-resolution transmission electron microscopy, we have confirmed that 5–6 MoS$_2$ layers with a large density of sulfur vacancies are grown uniformly on the entire substrate. The chemical composition of MoS$_2$ on graphene was evaluated by X-ray photoelectron spectroscopy, which confirmed the atomic ratio of Mo to S to be 1:1.78, which is much lower than the stoichiometric value of 2 from standard MoS$_2$. To exploit the properties of the nanocrystalline and defective MGH film obtained in our process, we have utilized it as a catalyst for hydrosulfurization and as an electrocatalyst for the hydrogen evolution reaction. Compared to MoS$_2$ grown on an amorphous SiO$_2$ substrate, the MGH has smaller onset potential and Tafel slope, indicating its enhanced catalytic performance. Our practical growth approach can be applied to other two-dimensional crystals, which are potentially used in a wide range of applications such as electronic devices and catalysis.

1. Introduction

Realization of two-dimensional (2D) heterostructures has been intensively studied in view of their unique chemical, physical, and electrical properties [1–4]. Thus far, the main strategy for the preparation of a 2D heterostructure has been based on the sequential stacking of the layered materials using wet or dry transfer methods [5,6]. Ideally, this method allows for a conceptually new class of flexible, transparent, and highly conductive, is an ideal template to synthesize various transition metal dichalcogenide (TMDC) materials [12–14]. However, CVD reactions need relatively high growth temperatures (600–1000 °C) [15–17], which is incompatible with the complementary metal-oxidesemiconductor (CMOS) process and can therefore increase the total thermal budget in device fabrication [18–20]. To overcome this limitation, plasma-enhanced CVD (PECVD)-based synthesis technique has been introduced for 2D materials [21,22]. Although initial installation cost of PECVD system is higher than that of typical CVD system, in the presence of accelerated energetic electrons, excited molecules, free radicals, photons, and other active species in the plasma, the controlled growth of 2D materials can be realized at a relatively lower temperature. Our group recently demonstrated the low-temperature growth of uniform MoS$_2$ on a flexible plastic substrate [23,24].

In view of its tunable band gap and relatively high carrier mobility, MoS$_2$ has been investigated for applications in future electronic devices [25]. In addition, defects and edges of MoS$_2$ on the basal plane can act as active catalyst for hydro-desulfurization, due to which MoS$_2$ is considered as a strong candidate to replace currently used noble Pt catalyst [4,26]. Since Pt, which is considered as the best catalyst for HER, is low in natural abundance and high in cost, alternative catalysts...
such as metal alloys, TMDs, and composite with TMDs were developed [9,27]. In particular, the combination of MoS$_2$ with graphene opens up new possibilities in electronic applications and also shows great potential as a catalyst [12,13,28–32]. To the best of our knowledge, however, the direct wafer-scale growth of MoS$_2$ on graphene at temperatures compatible with CMOS technology has not yet been reported. In this study, we demonstrate the fabrication of a MoS$_2$-graphene heterostructure (MGH) on a 4 inch wafer at 300 °C. A thin Mo film, which functions as a seed layer, was deposited on transferred graphene using e-beam evaporation after which, sulfurization was carried out using H$_2$S plasma. Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM) were used to confirm that MoS$_2$ layers are uniformly grown on the entire substrate. The chemical composition of MoS$_2$ on graphene was determined by X-ray photoelectron spectroscopy (XPS); observed XPS data confirmed that the atomic ratio of Mo to S was 1:1.78, which is far beyond the stoichiometric value of the standard MoS$_2$. To exploit the unique properties of the nanocrystalline MGH film with high density of sulfur vacancy, we tested it as a catalyst for hydrodesulfurization and as an electro-catalyst for the hydrogen evolution reaction (HER) [33].

2. Experimental

2.1. Growth and transfer of monolayer graphene.

Graphene was synthesized on Cu foils (25 μm-thick, Alpha Aesar, 99.99% purity) using a conventional CVD process. Cu foils were placed in a 4 inch diameter quartz tube and after evacuation, H$_2$ (8 sccm, 99.999%) was introduced into the chamber and the Cu foil was annealed at 1040 °C for 2 h to remove residual impurities. Next, graphene growth was carried out on the Cu foil for 1 h by injecting 30 sccm of CH$_4$ and 50 sccm of H$_2$. Finally, the furnace was rapidly cooled to room temperature under H$_2$ atmosphere. To transfer the CVD-grown graphene layer from the Cu foil, the as-grown graphene sample was coated with a support layer of poly(methyl methacrylate) (PMMA, Microchem) by spin coating. The Cu foil was dissolved in aqueous iron (III) chloride (FeCl$_3$) solution and the PMMA-coated graphene was washed several times with deionized (DI) water before transferring it onto a SiO$_2$/Si wafer. The PMMA film was then completely dissolved in acetone.

2.2. Direct growth of MoS$_2$-graphene heterostructure (MGH)

Growth of the MGH structure is schematically illustrated in Fig. 1. A thin film of molybdenum, which serves as a seed layer for the growth of MoS$_2$, was deposited by e-beam evaporation [21]. The Mo-deposited substrate was loaded into the PECVD chamber for sulfurization. Sulfurization at 300 °C under H$_2$S and Ar plasma atmosphere for 1.5 h led to the formation of MGH.

2.3. Characterization

The crystallinity and number of layers of graphene and MGH were characterized by Raman spectroscopy (Alpha300 M+ from WITec GmbH, Germany).
2.4. Electrochemical measurements

All the electrochemical measurements were carried out with a standard three electrode cell using a potentiostat (Autolab PGSTAT302N). A graphite rod (Sigma-Aldrich, 99.995%) and a saturated calomel electrode (saturated KCl) were used as the counter and reference electrodes (SCE, 0.256 V vs. RHE in 0.5 M H2SO4), respectively; all the measured potentials were referenced to the reversible hydrogen electrode (RHE) potential. Linear sweep voltammograms (LSV) were traced using a glassy carbon electrode (GCE) (0.196 cm², Pine Research Instrumentation, USA) at a scan rate of 2 mV s⁻¹ and rotation speed of 1600 rpm. Electrochemical impedance spectroscopy (EIS) was performed in the frequency range 0.01–100,000 Hz at −0.4 V (versus RHE) to determine the series resistance (Rₛ) and charge-transfer resistance (Rₜ). All the data presented were corrected with Rₛ. The GCE was polished with a 0.05 μm Al2O3 (Buehler) slurry, rinsed with deionized (DI) water, cleaned in water for 10 s using an ultrasonic cleaner and then washed once again with DI water. The bare glassy carbon electrode was polished to a mirror surface using 0.3 and 0.05 μm Al2O3 powders, consecutively, and thoroughly rinsed twice with DI water between each polishing step. Next, the electrode was washed successively in ultra-sonic bath with 1:1 (v/v) HNO3 aqueous solution, twice in DI water, once in ethanol, and again twice in DI water; finally, the clean electrode was dried in air.

3. Results and discussion

A photograph of the 100-cm²-area MGH (dark blue rectangular region) shows highly uniform growth of MGH on the 4-inch SiO2/Si wafer in Fig. 2(a). HR-TEM was conducted to determine both the number of layers and the crystallinity of the MGH. Cross sectional HR-TEM image of MGH and its corresponding electron energy loss spectroscopy elemental mapping images show that top MoS2 layers of total thickness 6–7 nm are uniformly and continuously grown on the underlying graphene (Fig. 2(b) and (c)). The d-spacing of the MoS2 layers (yellow line) and graphene (red line) is 0.63–0.65 nm and 0.30–0.32 nm, respectively, which is consistent with that measured for typical bulk MoS2 and graphite (Fig. 2(b)) [15]. An in-plane HR-TEM image of MGH in Fig. 2(d) depicts the overlapping of MoS2 and graphene layers with grain boundaries. The corresponding selected area electron diffraction (SAED) patterns of the MGH consist of single (red circles) and multiple (yellow circles) sets of diffractions spots with six-fold symmetry originating from the top layer of the nanocrystalline MoS2 and the bottom graphene layer, respectively, as depicted in Fig. 2(e). We also confirmed that the crystallinity of the bare MoS2 is similar to that of the MGH in Fig. S1. The overall crystal structure of MGH was elucidated by XRD, where four diffraction peaks at 20 values of 14.5°, 33°, 39°, and 59°, corresponding to the (0 0 2), (1 0 0), (1 0 3), and (1 1 0) planes, respectively, are seen, as marked in Fig. S2 (JCPDS 37-1492). We note here that the strong (0 0 2) reflection confirms the presence of the layered structure of MoS2 [34]. The topology of the MGH was investigated by AFM and the root mean square (RMS) value is estimated to be 1.95 nm (Fig. S3).

The chemical states of both the top-MoS2 film and the bottom-graphene layer in the MGH were analyzed sequentially by depth profiling XPS [35]. The Mo(3d) and S(2p) XPS spectra are presented in Fig. 3(a) and (b). The binding energies of the Mo⁴⁺ 3d peaks at 229.2 and 232.4 eV corresponding to Mo 3d_{5/2} and Mo 3d_{3/2}, respectively, and the S^{2-} 2p peaks at 162.1 and 163.3 eV, corresponding to the S 2p_{3/2} and S 2p_{1/2}, respectively, confirm the elemental composition of MoS2 on the surface of the MGH. The atomic ratio of S to Mo is found to be 1.95, which is close to the stoichiometric value of 2 in MoS2 (Fig. S4) [36]. After measuring the XPS of the MoS2 layer, plasma etching was carried out by Ar⁺ ion beam (4 kW, 6 μA, 3 min). It is seen that after plasma etching, the signals originating from MoS2 layers disappear but those from the underlying graphene appear. The binding energies of 284.6 eV, 285.2 eV, and 287.1 eV in the C1s core level spectral region, due to sp² carbon-carbon, sp³ carbon-carbon, and carbon-oxygen bonds, respectively, indicate that the carbon atoms maintained the honeycomb structure and are not chemically bonded to Mo and S [37].

To explore the effects of graphene during sulfurization, we have...
strate its catalytic activity, we transferred the MGH polished GCE as shown in Fig. S6. Due to the very weak interaction between the graphene layer and the SiO2 surface, it was possible to delaminate the MGH even in the presence of a MoS2 film on graphene [2,46]. For comparison, we transferred a bare MoS2 film onto the pristine GCE using a conventional transfer process. (See Fig. S7)

Electrochemical measurements were performed in 0.5 M H2SO4 solution using a typical three-electrode cell setup; the cathodic polarization curves and Tafel plots are shown in Fig. 5. It is seen that 20% Pt/C exhibits a near-zero potential and has the highest HER activity when compared to other catalysts [47,48]. In contrast, the GCE and pristine graphene on GCE electrodes do not show any catalytic behavior. However, the onset over-potential (η) and Tafel slope of the MGH were 0.21 V and 68 mV/dec, which was lower than that of bare MoS2, pointing to the enhanced catalytic performance of the MGH [49]. It is noted here that MGH shows a better catalytic activity than those previously reported for CVD grown MoS2 (including exfoliated MoS2) as previously published works [26,50–53]. Thus, the enhanced catalytic activity of the MGH film electrode can be attributed to the following: (1) The large density of grain boundaries and sulfur vacancies on the basal plane in the MGH structure, which give rise to a high density of active sites. (2) The efficient charge transport simultaneously grown MoS2 on both graphene and amorphous SiO2 surfaces; more details on the preparation of partially grown graphene and its transfer on SiO2/Si substrate are described in Fig. S5. The Raman spectra from both the MGH (black line) and bare MoS2 (red line) show strong and broad peaks at 373–379 cm\(^{-1}\) and 400–406 cm\(^{-1}\), which correspond to the in-plane vibration mode (\(E_{2g}\)) and out-of-plane vibration mode (\(A_{1g}\)), respectively, with weak defect-related satellite Raman peaks (marked as * in Fig. 4 (a)) [38]. In comparison to bare MoS2, the \(A_{1g}\) peak for the MGH is upshifted and the peak separation between \(E_{2g}\) and \(A_{1g}\) (\(\Delta k\)) is increased, indicating that the density of defects increases during sulfurization on the graphene (Fig. 4(b–d)) [13,39]. Interestingly, intensity of peak at 448 cm\(^{-1}\), which correspond to the S vacancy in MoS2, is significantly increased [38]. Thus, we may infer that the density of point defects (e.g. sulfur vacancies) in MGH should be higher than that in bare MoS2 [40]. The lattice constant difference of typical metal and MoS2 is less than 1%, while that of graphene and MoS2 is about 21.9%. Therefore, growing MoS2 on the graphene, which has the hexagonal crystal structure and strong interaction, may induce large numbers of point defects compared to growing MoS2 on the amorphous SiO2 surface [41–43]. We also note that the S/Mo stoichiometry of MGH from XPS is slightly decreased to 1.78, which indicates a reduction in the total amount of sulfur (Fig. S4). Compared to the Raman spectrum of pristine graphene on SiO2/Si substrate, the intensities of the G peak (\(~1580\) cm\(^{-1}\)) and 2D peak (\(~2580\) cm\(^{-1}\)) are not significantly changed after MoS2 growth, suggesting that the hexagonal carbon structure of graphene is not notably affected by plasma during sulfurization [44].

To exploit the properties of crystalline MoS2 on conducting graphene, we have investigated the MGH as a catalyst for hydrodesulfurization and as an electro-catalyst in the HER [45]. To demonstrate its catalytic activity, we transferred the MGH film onto a mirror-polished GCE as shown in Fig. S6. Due to the very weak interaction between the graphene layer and the SiO2 surface, it was possible to delaminate the MGH even in the presence of a MoS2 film on graphene [2,46]. For comparison, we transferred a bare MoS2 film onto the pristine GCE using a conventional transfer process. (See Fig. S7)

Electrochemical HER performances of MGH and bare MoS2 on GEC. (a) Polarization curves measured by LSV along with results from previously published works (b) Tafel plots obtained from polarization curves. (c) EIS of MGH and bare MoS2 fabricated at 300 °C on GCE; inset shows the spectrum for the specific range from 0 to 70 Ω.

Fig. 4. (a) Representative Raman spectra of MGH and bare MoS2 at the marked regions (inset shows the Raman mapping of the integrated intensity ratio of the G and 2D). Raman mapping image of MGH for (b) E\(_{2g}\) – A\(_{1g}\) (c) E\(_{2g}\) and (d) A\(_{1g}\) peak, respectively.

Fig. 5.
pathway through the highly conductive graphene layer from the active sites in MoS2 to the electrode in the MGH film [29,31]. (3) The reduction of band gap at the domain edge of nanocrystalline MGH, which sufficiently decrease hydrogen recombination barrier [55].

4. Conclusion

In conclusion, we have successfully synthesized a 4 inch sized MoS2-on-graphene heterostructure through a H2S sulfurization process. The Raman and HR-TEM results reveal that 5–6 MoS2 layers with a large density of sulfur vacancies and grain boundaries are uniformly grown on the entire substrate. To exploit the nanocrystalline MGH film containing a high sulfur vacancy concentration, we investigated the MGH as a catalyst for hydrogen desulfurization and as an electro-catalyst for the HER. When compared to MoS2 grown from an amorphous SiO2 substrate, the MGH electrodes have smaller onset potential and Tafel slope, indicating their enhanced catalytic performance. This enhancement can be attributed to the high density of defects (grain boundaries and sulfur vacancies) present in MoS2 synthesized on graphene, which while increasing the total number of active sites, provide an effective charge transport pathway through the highly conducting graphene layer. We believe that this study will lead to the development of practical strategies for the large-scale synthesis of various 2D heterostructures at low temperatures and thus promote their use in a wide range of applications.

Acknowledgment

This work was supported by the Presidential Postdoctoral Fellowship Program of the Ministry of Education, through the NRF (2014RAA0A3A04058169) and NRF-2017R1A2B3011222. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07040292).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apsusc.2018.11.126.

References

